Energy3d
Author: f | 2025-04-25
Energy3D Prometheus overview The Prometheus is a large format 3D scanner produced by Energy3D, a manufacturer based in Italy. The Prometheus Energy3D uses the structured light technology. Energy3D version 4.8 (Energy3D.exe). Energy3D is a computer-aided engineering tool for designing, analyzing
Energy3D Download - Energy3D a tool for designing, analyzing
Fig. 1 2D view of Concord Consortium building in Energy3DSolar design depends on accurate geometry. Rooftop solar panel design requires accurate 3D models of buildings, for example the shape of the roof, the height of the building, and the surrounding objects such as trees. Likewise, solar power station design requires accurate information about the field.Fig. 2 3D view of Concord Consortium building in Energy3DThe easiest way to obtain these information is through Google Map, from which the dimension of an object can be measured. Although Google Map has not provided elevation data for a point yet, Google Earth does for many towns. Earlier this year, students who performed solar design with Energy3D in our pilot tests must use Google Earth to retrieve the geometrical data for use in Energy3D design later. Having to master two sophisticated software tools simultaneously in a short time has turned out to be quite a challenge to many students. So an idea came to our mind: Why not just make Google Earth work within Energy3D? (Note: In fact, this is also a common feature among CAD software such as SketchUp.)Fig. 3 Solar heat map of Concord Consortium buildingIt turned out that this integration is fairly simple, because Google has done the hard part of providing an easy-to-use Web API for virtually every platform. So in the latest version of Energy3D (V5.8.2 or higher), users will have an internal Google Map ready to help them with their solar designs. Fig. 4 2D view of a solar
energy3d/energy3d.iml at master concord-consortium/energy3d
Fig.1: The Gherkin (London, UK)In Part I, I showed that Energy3D can import COLLADA models and perform some analyses. This part shows that Energy3D (Version 6.3.5 or higher) can conduct full-scale solar radiation analysis for imported models. This capability officially makes Energy3D a useful daylight and solar simulation tool for sustainable building design and analysis. Its ability to empower anyone to analyze virtually any 3D structure with an intuitive, easy-to-use interface and speedy simulation engines opens many opportunities to engage high school and college students (or even middle school students) in learning science and engineering through solving authentic, interesting real-world problems. Fig. 2: Beverly Hills Tower (Qatar) There is an ocean of 3D models of buildings, bridges, and other structures on the Internet (notably from SketchUp's 3D Warehouse, which provides thousands of free 3D models that can be exported to the COLLADA format). These models can be imported into Energy3D for analyses, which greatly enhances Energy3D's applicability in engineering education and practice.Fig. 3: Solar analysis of various housesThe images in this post show examples of different types of buildings, including 30 St Mary Axe (the Gherkin) in London, UK (Figure 1) and the Beverly Hills Tower in Qatar (Figure 2). Figure 3 shows the analyses of a number of single-family houses. All the solar potential heat maps were calculated and generated based on the total solar radiation that each unit area on the building surfaces receive during the selected day (June 22).These examples should give you some ideas about whatenergy3d/build.xml at master concord-consortium/energy3d
. Energy3D Prometheus overview The Prometheus is a large format 3D scanner produced by Energy3D, a manufacturer based in Italy. The Prometheus Energy3D uses the structured light technology. Energy3D version 4.8 (Energy3D.exe). Energy3D is a computer-aided engineering tool for designing, analyzingenergy3d/src/main/java/org/concord/energy3d
Fig. 1: An Energy3D model of the SAS solar farmFig. 2: Daily production data (Credit: Xan Gregg)SAS, a software company based in Cary, NC, is powered by a solar farm consisting of solar panel arrays driven by horizontal single-axis trackers (HSAT) with the axis fixed in the north-south direction and the panels rotating from east to west to follow the sun during the day. Figure 1 shows an Energy3D model of the solar farm. Xan Gregg, JMP Director of Research and Development at SAS, posted some production data from the solar farm that seem so counter-intuitive that he called it a "solar array surprise" (which happens to also acronym to SAS, by the way).The data are surprising because they show that the outputs of solar panels driven by HSAT actually dip a bit at noon when the intensity of solar radiation reaches the highest of the day, as shown in Figure 2. The dip is much more pronounced in the winter than in the summer, according to Mr. Gregg (he only posted the data for April, though, which shows a mostly flat top with a small dip in the production curve).Fig. 3: Energy3D results for four seasons.Anyone can easily confirm this effect with an Energy3D simulation. Figure 3 shows the results predicted by Energy3D for 1/22, 4/22, 7/22, and 10/22, which reveal a small dip in April, significant dips in January and October, and no dip at all in July. How do we make sense of these results?Fig. 4: Change of incident sunbeam angle on 1/22 (HSAT).One of the most important factors that affect the output of solar panels, regardless of whether or not they turn to follow the sun, is the angle of incidence of sunlight (the angle between the direction of the incident solar rays and the normal vector of the solar panel surface). The smaller this angle is, the more energy the solar panel receives (if everything else is the same). If we track the change of the angle of incidence over time for a solar panel rotated by HSAT on January 22, we can see thatenergy3d/src/main/java/org/concord/energy3d/MainApplication
Farm in Concord, MA in Energy3DSolar designers can specify a target location in Energy3D and then a Google Map image will be downloaded and used to overlay the ground in Energy3D. They can then draw a 3D building on top of this image by tracing the envelope of the building, eliminating the need to set the dimension of each side numerically. Figures 1-3 demonstrate the result of this new feature using the Concord Consortium's office building as an example.Fig. 5 3D view of a solar farm in Concord, MA in Energy3DA remarkable advantage brought by this feature is that it is easy to add model trees on top of the images of surrounding trees. A future version will also allow users to adjust the height and spread of a model tree based on the Google Map image.Other than assisting designers to acquire site data, the map image also provides a rendering of how a new design may look like in an environment with existing buildings (just pretend for a moment that the building in Figure 2 hadn't existed and were a proposal to build two new houses at the site). Furthermore, with Google Map's elevation API, we will also be able to construct a terrain model of the ground (which is currently flat). Such a terrain model will not only make the energy simulation more accurate by taking all the surrounding objects into account but also make the rendering more realistic by giving the 2D map image a 3D effectTUTORIAL ON ENERGY3D - sidilab.files.wordpress.com
. Energy3D Prometheus overview The Prometheus is a large format 3D scanner produced by Energy3D, a manufacturer based in Italy. The Prometheus Energy3D uses the structured light technology.Comments
Fig. 1 2D view of Concord Consortium building in Energy3DSolar design depends on accurate geometry. Rooftop solar panel design requires accurate 3D models of buildings, for example the shape of the roof, the height of the building, and the surrounding objects such as trees. Likewise, solar power station design requires accurate information about the field.Fig. 2 3D view of Concord Consortium building in Energy3DThe easiest way to obtain these information is through Google Map, from which the dimension of an object can be measured. Although Google Map has not provided elevation data for a point yet, Google Earth does for many towns. Earlier this year, students who performed solar design with Energy3D in our pilot tests must use Google Earth to retrieve the geometrical data for use in Energy3D design later. Having to master two sophisticated software tools simultaneously in a short time has turned out to be quite a challenge to many students. So an idea came to our mind: Why not just make Google Earth work within Energy3D? (Note: In fact, this is also a common feature among CAD software such as SketchUp.)Fig. 3 Solar heat map of Concord Consortium buildingIt turned out that this integration is fairly simple, because Google has done the hard part of providing an easy-to-use Web API for virtually every platform. So in the latest version of Energy3D (V5.8.2 or higher), users will have an internal Google Map ready to help them with their solar designs. Fig. 4 2D view of a solar
2025-04-24Fig.1: The Gherkin (London, UK)In Part I, I showed that Energy3D can import COLLADA models and perform some analyses. This part shows that Energy3D (Version 6.3.5 or higher) can conduct full-scale solar radiation analysis for imported models. This capability officially makes Energy3D a useful daylight and solar simulation tool for sustainable building design and analysis. Its ability to empower anyone to analyze virtually any 3D structure with an intuitive, easy-to-use interface and speedy simulation engines opens many opportunities to engage high school and college students (or even middle school students) in learning science and engineering through solving authentic, interesting real-world problems. Fig. 2: Beverly Hills Tower (Qatar) There is an ocean of 3D models of buildings, bridges, and other structures on the Internet (notably from SketchUp's 3D Warehouse, which provides thousands of free 3D models that can be exported to the COLLADA format). These models can be imported into Energy3D for analyses, which greatly enhances Energy3D's applicability in engineering education and practice.Fig. 3: Solar analysis of various housesThe images in this post show examples of different types of buildings, including 30 St Mary Axe (the Gherkin) in London, UK (Figure 1) and the Beverly Hills Tower in Qatar (Figure 2). Figure 3 shows the analyses of a number of single-family houses. All the solar potential heat maps were calculated and generated based on the total solar radiation that each unit area on the building surfaces receive during the selected day (June 22).These examples should give you some ideas about what
2025-04-23Fig. 1: An Energy3D model of the SAS solar farmFig. 2: Daily production data (Credit: Xan Gregg)SAS, a software company based in Cary, NC, is powered by a solar farm consisting of solar panel arrays driven by horizontal single-axis trackers (HSAT) with the axis fixed in the north-south direction and the panels rotating from east to west to follow the sun during the day. Figure 1 shows an Energy3D model of the solar farm. Xan Gregg, JMP Director of Research and Development at SAS, posted some production data from the solar farm that seem so counter-intuitive that he called it a "solar array surprise" (which happens to also acronym to SAS, by the way).The data are surprising because they show that the outputs of solar panels driven by HSAT actually dip a bit at noon when the intensity of solar radiation reaches the highest of the day, as shown in Figure 2. The dip is much more pronounced in the winter than in the summer, according to Mr. Gregg (he only posted the data for April, though, which shows a mostly flat top with a small dip in the production curve).Fig. 3: Energy3D results for four seasons.Anyone can easily confirm this effect with an Energy3D simulation. Figure 3 shows the results predicted by Energy3D for 1/22, 4/22, 7/22, and 10/22, which reveal a small dip in April, significant dips in January and October, and no dip at all in July. How do we make sense of these results?Fig. 4: Change of incident sunbeam angle on 1/22 (HSAT).One of the most important factors that affect the output of solar panels, regardless of whether or not they turn to follow the sun, is the angle of incidence of sunlight (the angle between the direction of the incident solar rays and the normal vector of the solar panel surface). The smaller this angle is, the more energy the solar panel receives (if everything else is the same). If we track the change of the angle of incidence over time for a solar panel rotated by HSAT on January 22, we can see that
2025-03-30Farm in Concord, MA in Energy3DSolar designers can specify a target location in Energy3D and then a Google Map image will be downloaded and used to overlay the ground in Energy3D. They can then draw a 3D building on top of this image by tracing the envelope of the building, eliminating the need to set the dimension of each side numerically. Figures 1-3 demonstrate the result of this new feature using the Concord Consortium's office building as an example.Fig. 5 3D view of a solar farm in Concord, MA in Energy3DA remarkable advantage brought by this feature is that it is easy to add model trees on top of the images of surrounding trees. A future version will also allow users to adjust the height and spread of a model tree based on the Google Map image.Other than assisting designers to acquire site data, the map image also provides a rendering of how a new design may look like in an environment with existing buildings (just pretend for a moment that the building in Figure 2 hadn't existed and were a proposal to build two new houses at the site). Furthermore, with Google Map's elevation API, we will also be able to construct a terrain model of the ground (which is currently flat). Such a terrain model will not only make the energy simulation more accurate by taking all the surrounding objects into account but also make the rendering more realistic by giving the 2D map image a 3D effect
2025-04-19